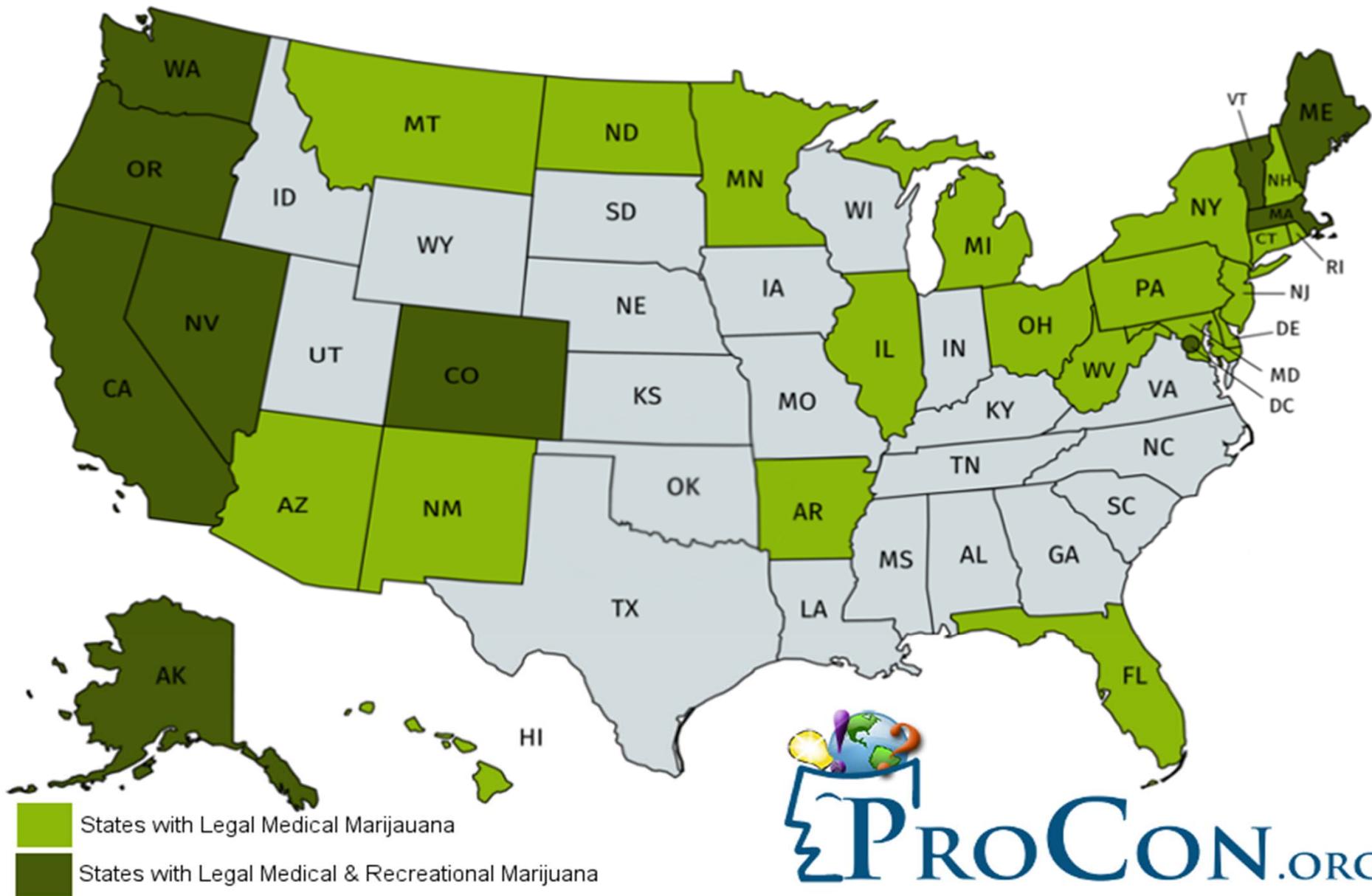


MEDICAL MARIJUANA

WHAT IS MEDICAL MARIJUANA?¹⁰

- “Medical Marijuana refers to using the whole unprocessed marijuana plant or its basic extracts to treat a disease or symptom”
- The FDA has not recognized or approved the marijuana plant as medicine
- The chemicals in marijuana are called cannabinoids



BACKGROUND¹

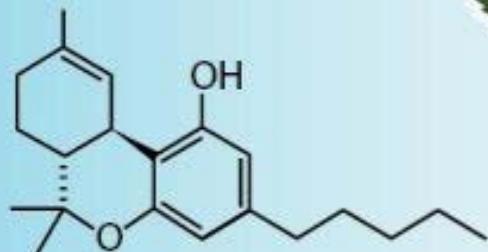
- Marijuana is the female flowers and dried leaves of the hemp plant called *Cannabis sativa*
- 30 states and the District of Columbia have legalized medical marijuana
- All marijuana can be considered medical-grade since it all has some therapeutic effect

~~30~~ **29** Legal Medical Marijuana States & DC
9 Legal Recreational Marijuana States & DC

BACKGROUND⁴

- The potency of marijuana varies from strain to strain
 - As low as 2-3% THC
 - As high as 30% THC
- Higher potency indicates that the patient will need a lower dose

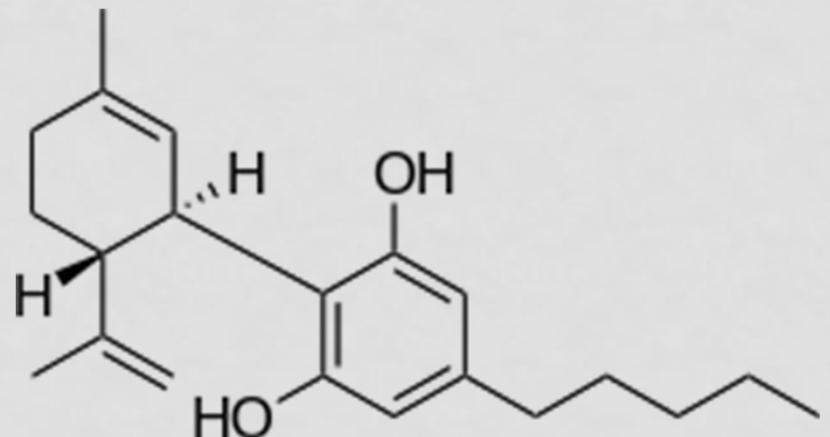
WHAT ARE CANNABINOID^S?¹⁰


- Cannabinoids are chemicals that are related to the commonly known ingredient in marijuana known as THC (delta-9-tetrahydrocannabinol)
- Another cannabinoid of interest is CBD
- There are over 100 other cannabinoids other than THC that is found in marijuana
- Cannabinoids are similar to flavonoids that are found in chocolate

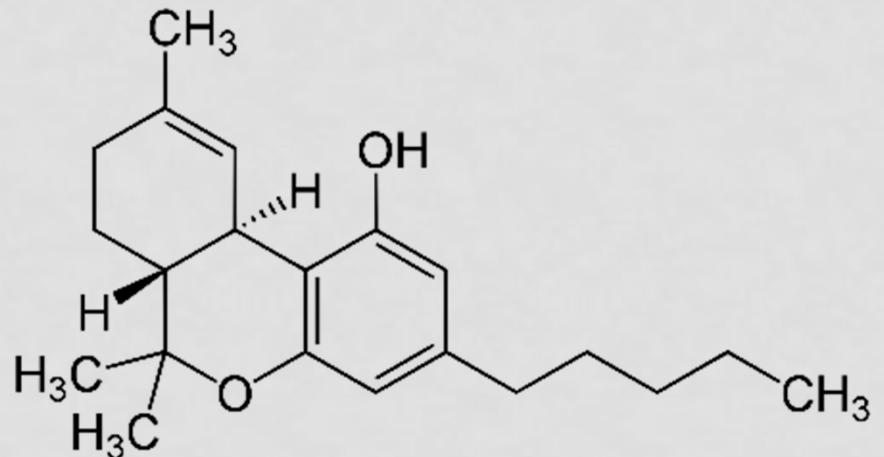
WHAT ARE CANNABINOIDS?¹⁰

Psychoactive

THC


Non-psychoactive

CBD


WHAT IS CBD?¹⁰

- Cannabidiol (CBD) is a cannabinoid, but it is not psychoactive
- It is useful in reducing pain and inflammation, controlling epilepsy, and possibly treating anxiety and addictions
- Non-CB receptor mechanism


WHAT IS THC?^{10,11,31}

- Δ^9 -tetrahydrocannabinol (THC) is the psychoactive component of marijuana
- It is a potent antioxidant
- It is a partial agonist for the CB1 and CB2 receptors
- CB1 receptors regulate the release of other neurotransmitters

WHAT IS THC?^{10,11}

- THC increases appetite and reduces nausea
- THC may also decrease pain, inflammation, and muscle control problems
- The FDA has approved the use of synthetic THC for appetite and nausea reduction purposes

FDA APPROVED CANNABINOIDS

Dronabinol

Brand names: Marinol

Class: Synthetic THC

Approved indications: Chemotherapy-induced nausea and vomiting in patients who have failed previous treatments; AIDS – loss of appetite

FDA APPROVED CANNABINOIDS

Nabilone

Brand name: Cesamet

Class: Synthetic THC Analogue

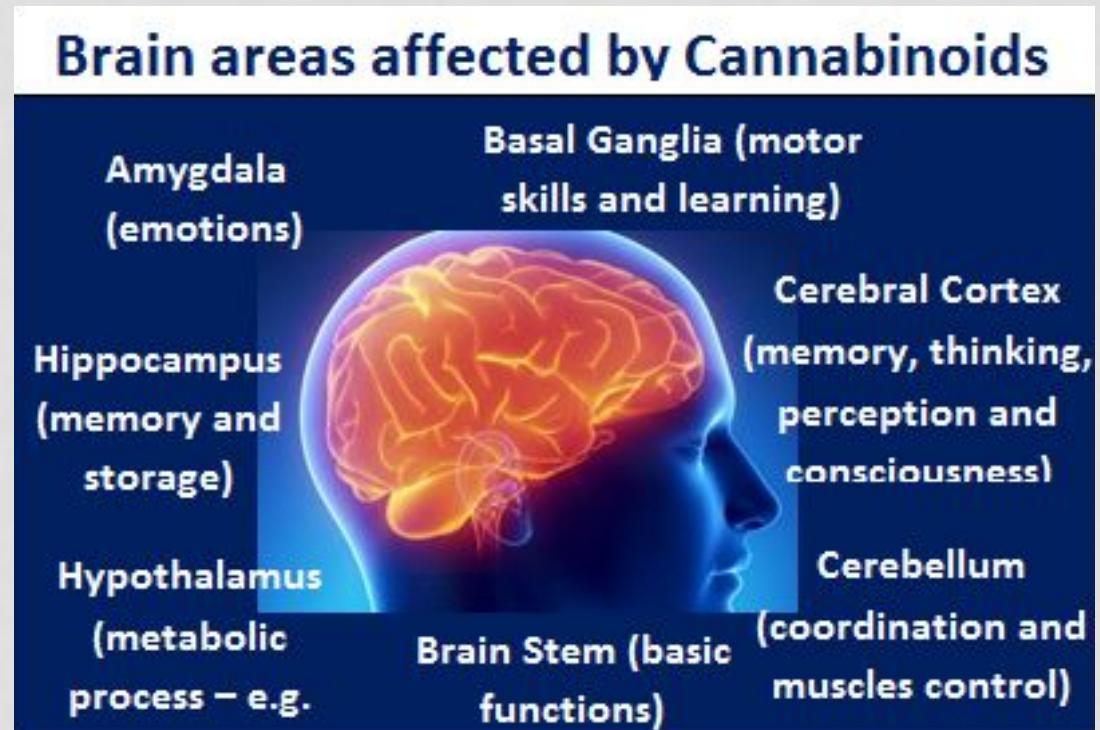
Approved indications: Chemotherapy-induced nausea and vomiting in patients who have failed previous treatments

FDA APPROVED CANNABINOIDS

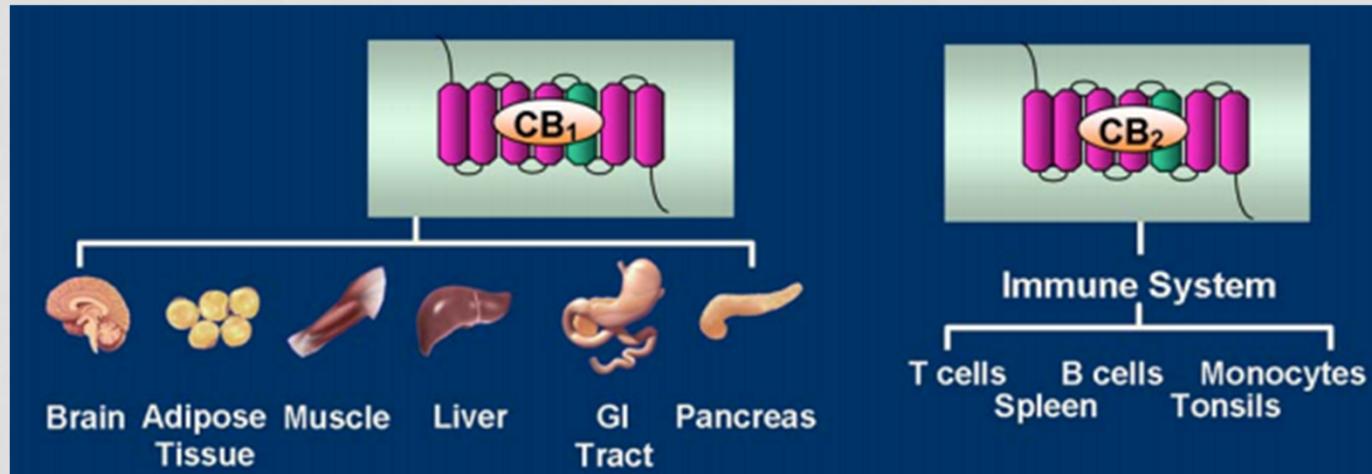
Cannabidiol

Brand name: Epidiolex

Class: Plant-derived CBD

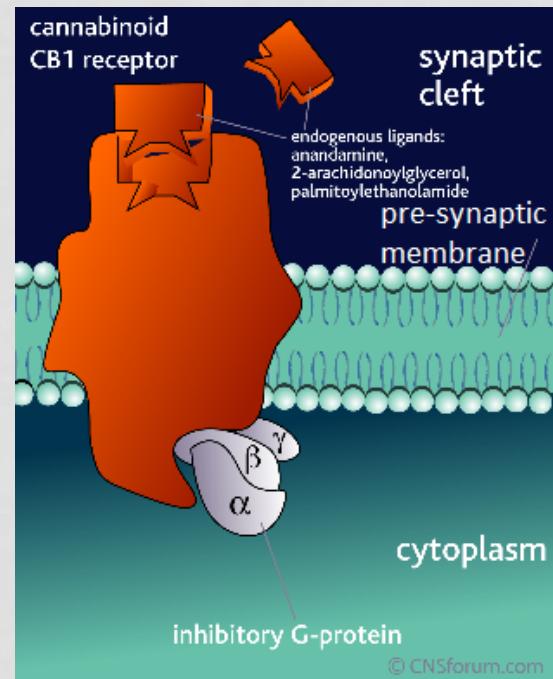

Approved indications: Lennox-Gastaut syndrome, Dravet syndrome

*Approved June, 2018

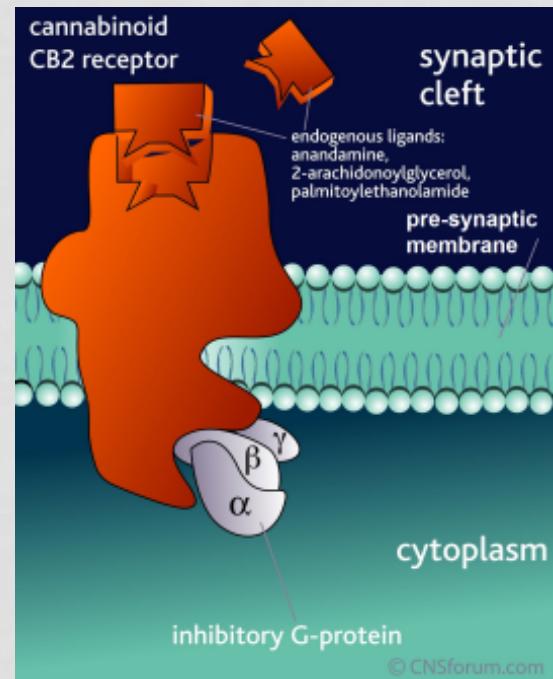


WHAT ARE CANNABINOIDs?¹⁰

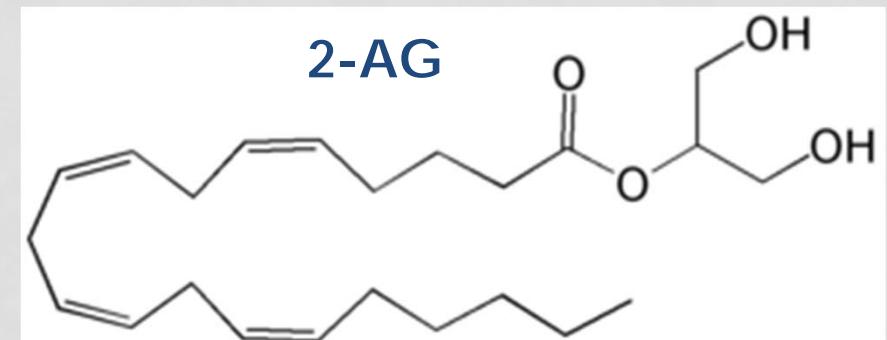
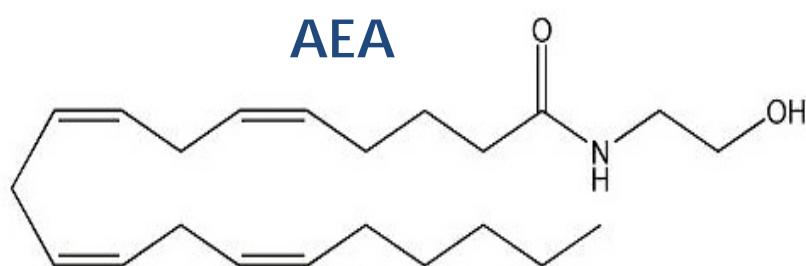
- The body produces its own endocannabinoids that help to regulate the following:
 - Pleasure
 - Memory
 - Thinking
 - Concentration
 - Body movement
 - Awareness of Time
 - Appetite
 - Pain
 - Senses – taste, touch, smell, hearing, and sight


CANNABINOID RECEPTORS²¹⁻²⁵

- Receptors are CB₁ and CB₂
 - CB₁ - mostly expressed in the brain, but also found in peripheral nerves, circulating immune cells, adrenal gland, heart, lung, liver, bone marrow, and in reproductive tissues
 - CB₂ – mostly expressed in immune tissue
- G_{i/o}-protein coupled receptors
- Only activated by THC – not CBD!

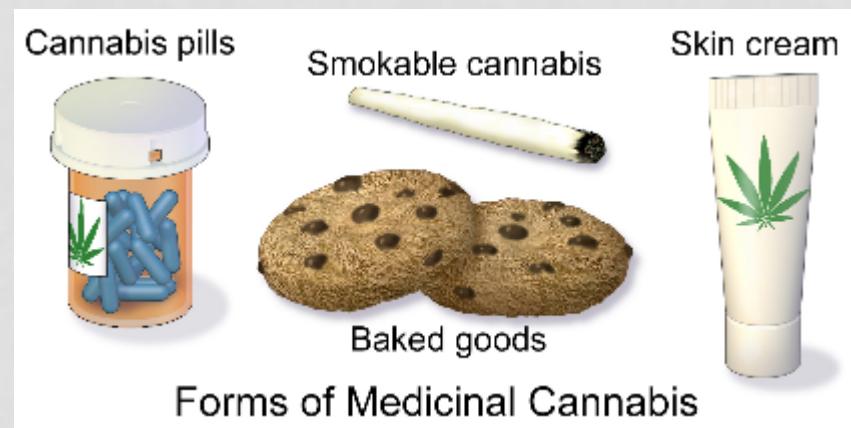

CB₁ RECEPTOR³⁹

- Located mainly in central and peripheral nervous system
- Effects of CB₁ are neuromodulatory
- Inhibits the release of neurotransmitters
 - Mainly Glutamate, GABA in the brain
 - Also acetylcholine, norepinephrine, dopamine, serotonin, and D-aspartate



CB₂ RECEPTOR³⁹

- Present mainly on peripheral tissues and central immune cells
- Activation of this receptor leads to:
 - Immunosuppression
 - Anti-inflammatory effects
 - Anti-nociceptive effects

ENDOGENOUS CANNABINOIDS


- Ligands for CB1 and CB2
- Arachidonic acid derivatives:
- AEA: Anandamide
 - Relatively low levels in CNS, degraded by FAAH
- 2-AG: 2-arachidonoylglycerol
 - Widespread in the CNS

PHARMACOKINETICS & PHARMACODYNAMICS

FORMS OF MEDICAL MARIJUANA²

- Smoked – most common form
- Capsules
- Vaporization
- Edible form
- Transdermal
- Suppositories
- Liquid to drink

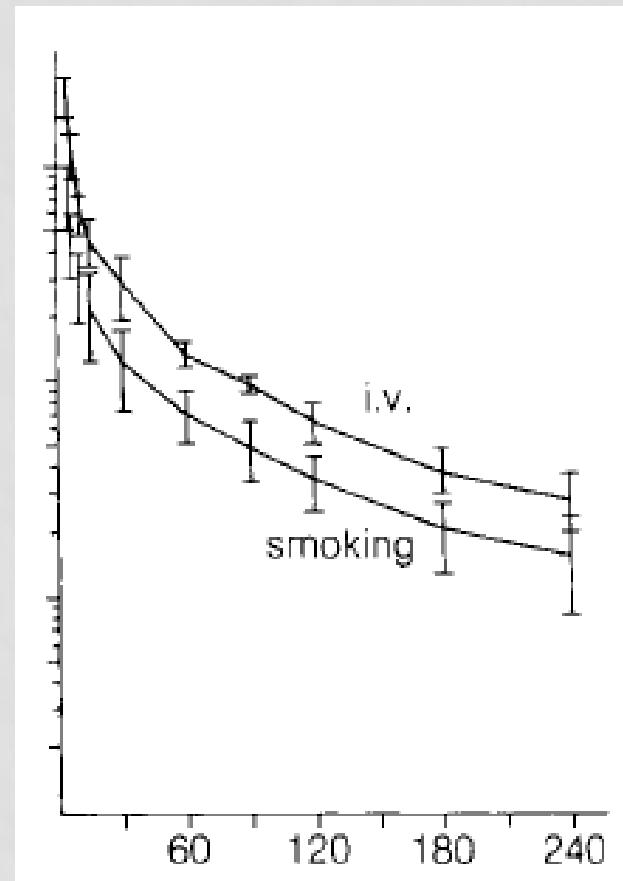
HOW IS MARIJUANA USED?

SMOKED	VAPORIZED	EATEN/DRUNK
Smoked in a pipe, bowl, cigarette	Inhaled through machine that converts active compounds into inhalable form	Consumed as ingredient in baked goods, candies, sodas, pill form
Rapid effects	Rapid effects	Takes time to reach brain, so effects are delayed
Releases toxins that can cause pulmonary problems	Does not release toxins that cause pulmonary problems	Does not release toxins that cause pulmonary problems

PHARMACOKINETICS OF CANNABIS⁴¹

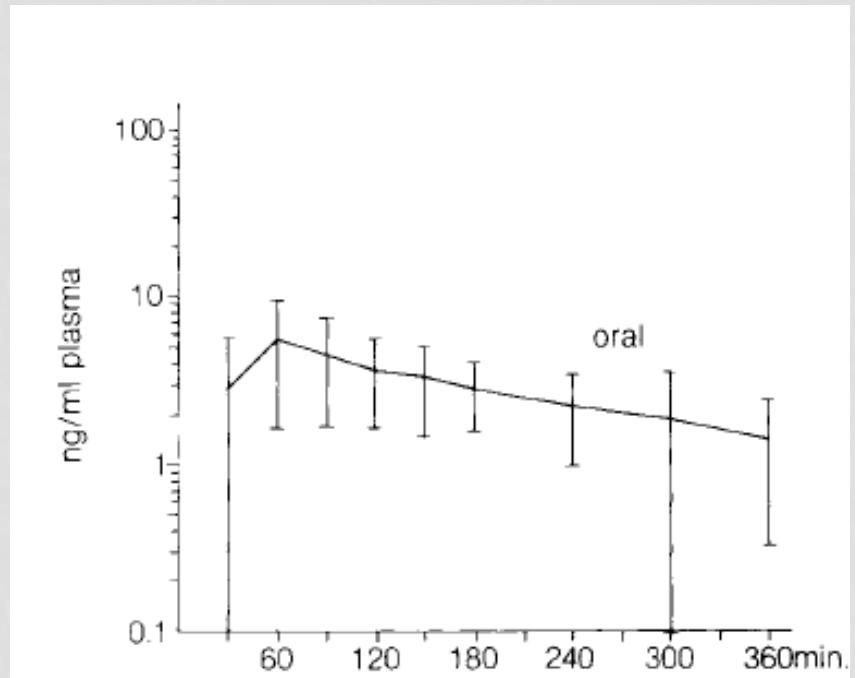
- Cannabinoids are highly lipophilic and protein bound
- Rapidly distributed into tissues, especially BBB
 - Peak plasma concentration 3 min after smoking
- Volume of distribution (Vd) of THC = 10 L/kg
 - Blood concentrations are therefore not directly related to the drug effect
- The release from the lipid stores along with enterohepatic recirculation accounts for retention of THC

ONSET AND DURATION OF CANNABIS

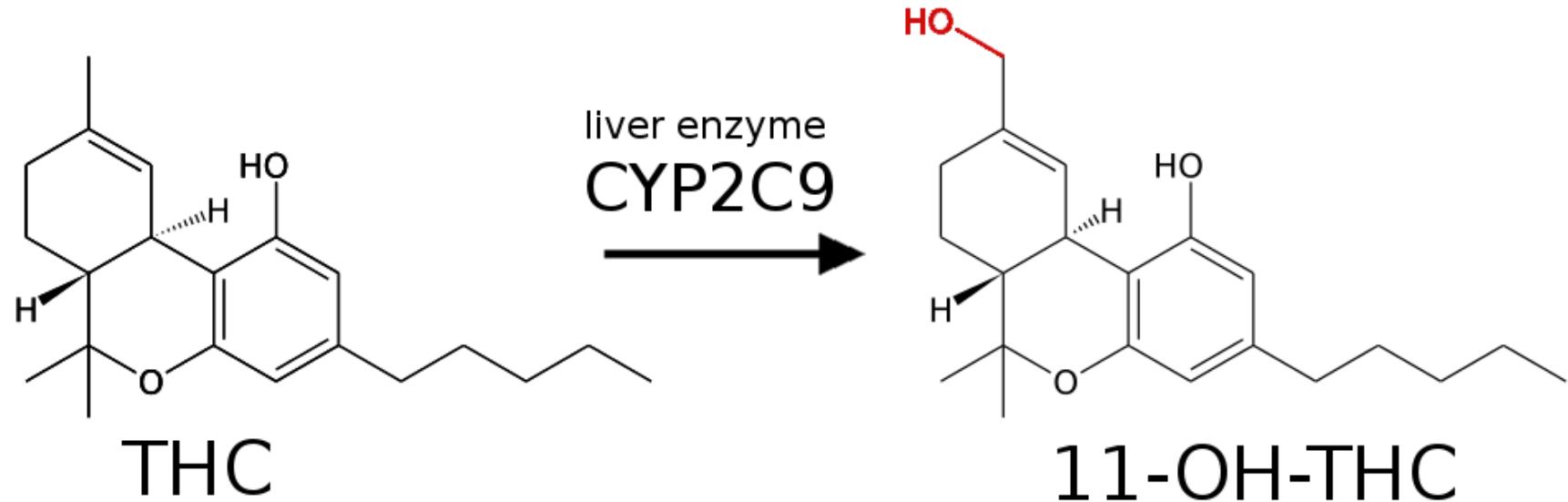

- Physical and psychosocial effects commence within minutes after use
 - Usually within 15 minutes
 - Peak effects occur within 30 minutes to 60 minutes post-smoking and last 2-4 hours
- Psychosocial effects can stay for up to 4 to 8 hours depending upon route of administration
 - Oral has a slower onset, but longer duration

PSYCHOSOCIAL EFFECTS

- Effects do not depend on blood concentration
 - Depends partially on the dose
- Effects are dose-dependent and route-dependent
 - Lower dose effects: euphoria, relaxation, wide range from exhilaration to introspection, distortion of time and some visual hallucinations, memory distortions (especially short-term memory), hunger
 - Higher dose effects: anxiety, tension, anger, confusion, hallucinations, paranoia, and panic attacks


PHARMACOKINETICS OF SMOKING THC³¹

- Bioavailability: 10-25%
 - 50% of the THC content is delivered into smoke
 - 50% of smoke is exhaled again
 - 60% of inhaled smoke may be metabolized by the lung
- Peak concentrations are reached within 2-10 minutes
- $T_{1/2}$ distribution: 0.5hr
- $T_{1/2}$ elimination: 30hr
- Smoking THC mimics IV


PHARMACOKINETICS OF ORAL THC³¹

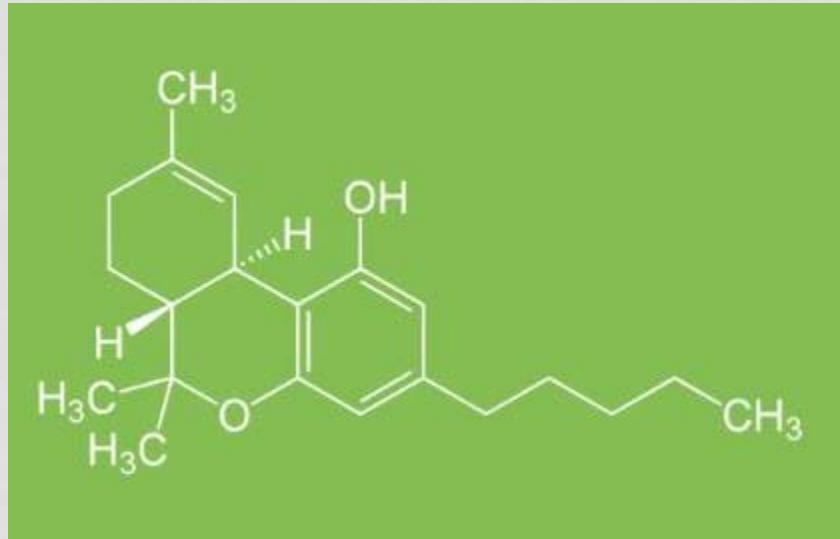
- Bioavailability: 6-20%
 - Usually 1/3 of that smoked due to gastric degradation and extensive first pass metabolism effects
 - High patient variability
 - Can lead to increased toxicities because delayed effect
- Multiple low peak concentrations in 1-6hr
- $T_{1/2}$ absorption: 0.8hr
- $T_{1/2}$ distribution: 3.8hr
- $T_{1/2}$ elimination: 25hr

METABOLISM OF THC⁴³

- 9Δ-THC is converted to 11-OH-THC, a potent psychoactive metabolite
 - Rapid conversion in oral administration via first-pass metabolism

METABOLISM OF THC^{44,45,46}

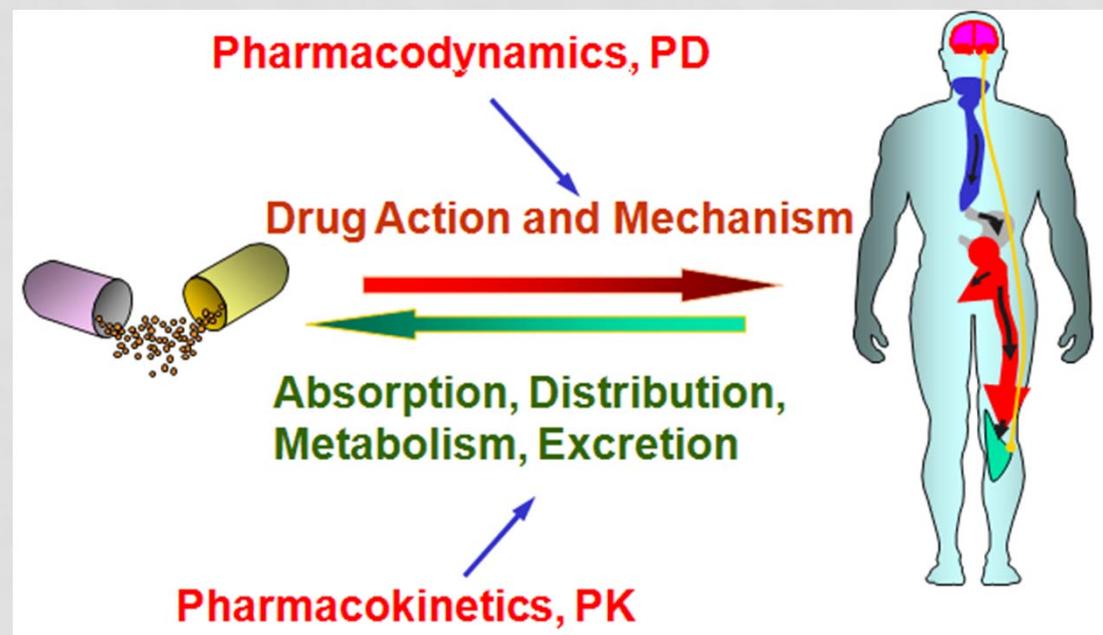
- THC metabolized by CYP3A4 and CYP2C9
- CBD metabolized by CYP3A4 and CYP2C19
- CBD has been shown to inhibit CYPs 3A4 and 2D6
- THC may induce CYP1A2
 - Only demonstrated *in vitro* - limited clinical data


PHARMACOKINETICS OF CANNABIS

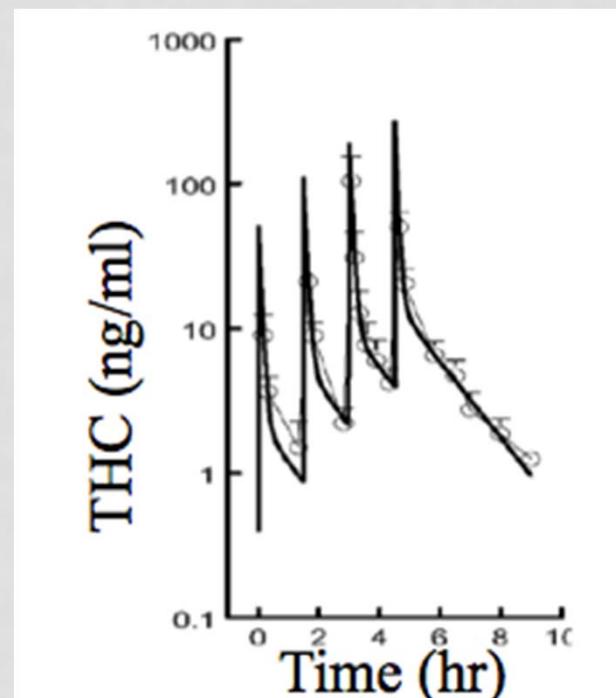
- THC can be detected in urine for days after use
- Terminal half-life up to 4 days in frequent users
- Passive inhalation – “second-hand high” requires very high concentrations of smoke in a small enclosed area
 - Very unlikely

DOSE OF THC³¹

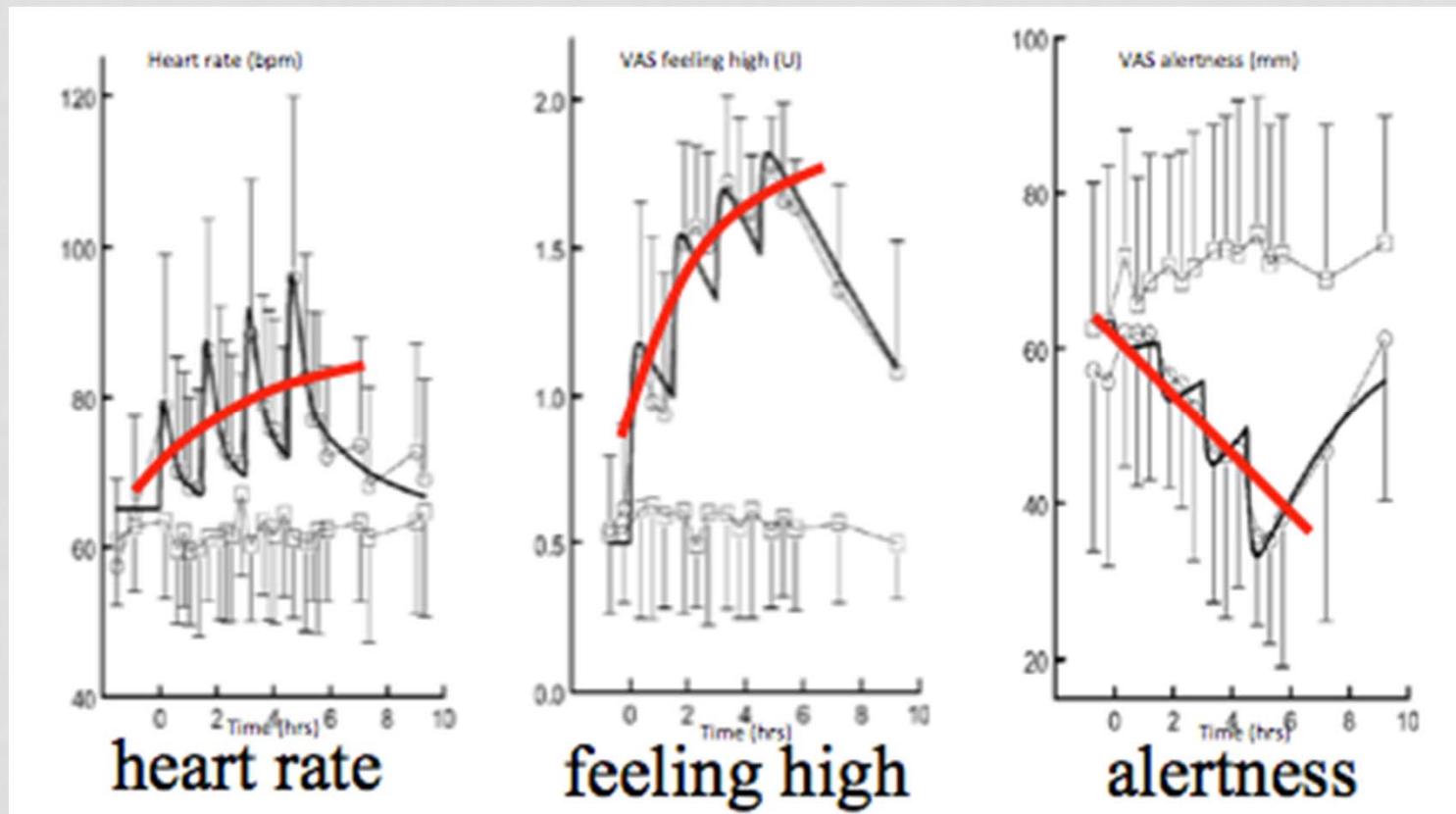
- Effective dosing of THC
 - Low dose: <7 mg
 - Medium dose: 7-18mg
 - High dose: >18mg
- Tolerance to THC exists via the down-regulation of the CB1 receptors
 - High tolerance occurs with chronic use
 - Low tolerance occurs with intermittent use


VAPORIZATION

- Cannabinoids vaporize at a temperature lower than combustion
- Results in lower percent of noxious chemicals


PHARMACODYNAMICS OF THC³²

- Elevation in heart rate: average >19bpm
- Increase in subjective feeling high
- Decrease in subjective alertness
- Increase in motor instability – body sway



PK/PD MODEL OF THC³²

- In study by Zuuman et al, subjects were given increasing doses (2, 4, 6, 8mg) of THC via vaporizer at 1.5hr intervals

PK/PD MODEL OF THC³²

MEDICAL CANNABIS IMPACT ON HORMONES

- Males:
 - Decreases luteinizing hormone (LH)
 - Decreases follicle stimulating hormone (FSH)
 - Decreased Prolactin
 - Decreased growth hormone (GH)
- Females: More sensitive than males to THC effects
 - More estrogen suppression

1E
SLIDE

MARIJUANA EFFECTS ON THE BRAIN

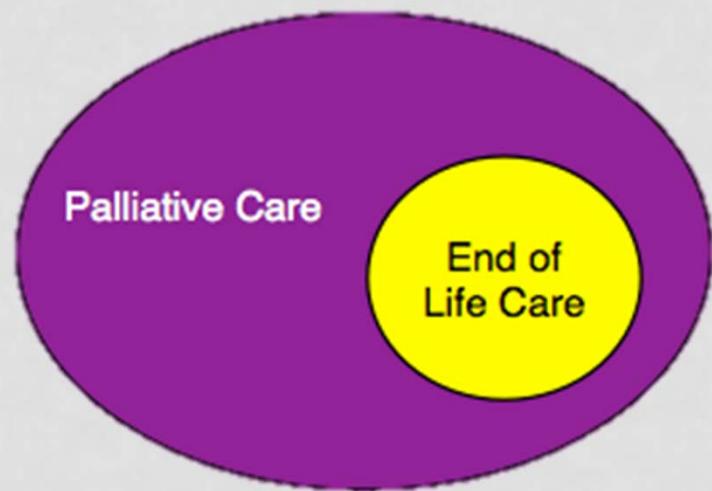
MARIJUANA EFFECTS ON THE BRAIN

- Hypothalamus: increased appetite
- Brain stem: nausea relief, lowered blood pressure, drowsiness, decreased pain, decreased spasticity, and decreased tremor
- Hippocampus: memory impairment

MARIJUANA EFFECTS ON THE BRAIN

- Cerebral cortex: altered consciousness, perceptual distortions, memory impairment, delusions, hallucinations
- Cerebellum: loss of coordination
- Amygdala: changes in anxiety, pain attacks, lowered traumatic memories, decreased hostility

USES OF MEDICAL MARIJUANA


QUALIFYING MEDICAL CONDITIONS³

Varies by state – e.g. in Michigan:

- Severe and chronic pain
- Severe and persistent muscle spasms
 - Ex. MS
- Alzheimer's Disease
- Amyotrophic lateral sclerosis (ALS)
- Cachexia C
- Crohn's Disease
- Cancer
- Glaucoma
- HIV/AIDs
- Hepatitis C
- Seizures, epilepsy
- Nail-patella syndrome
- PTSD
- Severe nausea

MEDICAL MARIJUANA AND PALLIATIVE CARE

- Medical marijuana is centered on palliative care — improving quality life of patients and families in order to mitigate suffering

SEVERE AND CHRONIC PAIN²⁶

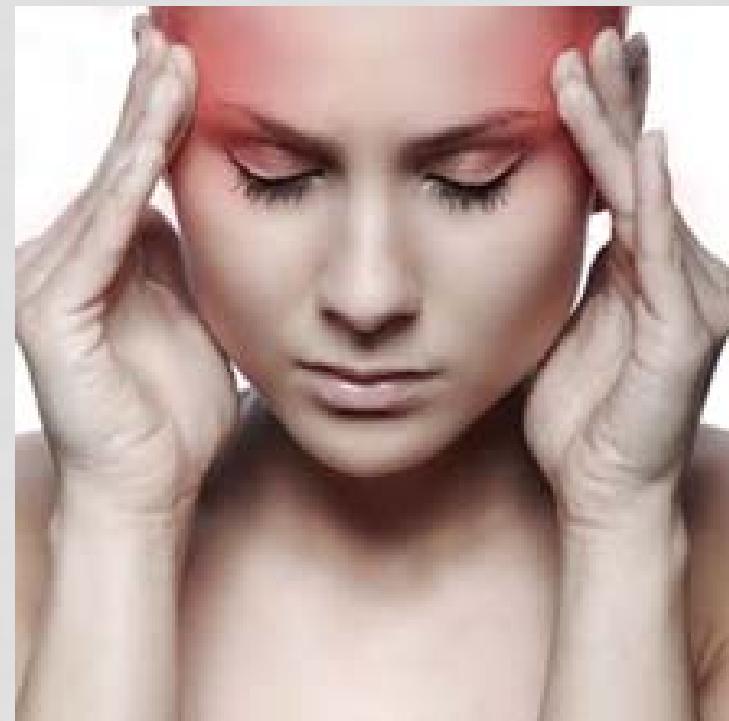
- Medical marijuana is primarily good at relieving pain
- Components of pain that may respond to cannabis:
 - Neuropathic – burning, piercing
 - Mechanical – dull, aching
 - Inflammatory – acute, sharp

2009 META ANALYSIS FOR PAIN⁴¹

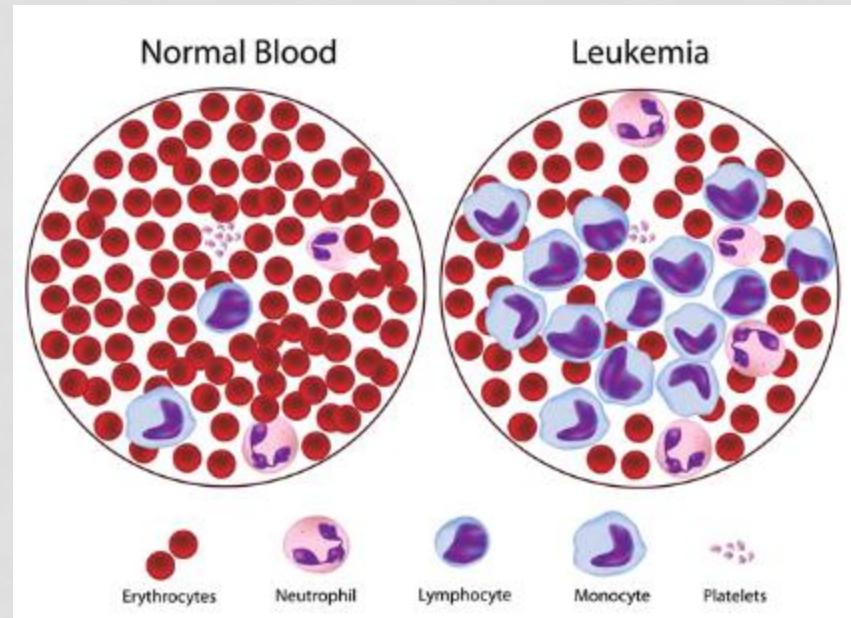
- 18 double-blind RCTs (N=2,838) plant-based preparations or nabilone to placebo in treating any type of chronic pain
- Results: significant reduction in pain
 - Standardized mean difference: **-0.61** (95% CI -.84, -.37)
- Side effects:
 - Mood disturbances (OR 4.11)
 - Alterations in perception (OR 4.51)
 - Affected motor function (OR 3.93)
 - Altered cognitive function (OR 4.46)
- Authors' conclusion: cannabis may offer moderate efficacy for treatment of chronic pain

2015 META ANALYSIS FOR PAIN⁴⁷

- 28 double-blind RCTs (N=2,454) comparing any cannabis preparation to placebo in treating any type of chronic pain
- Results: not statistically significant
 - $\geq 30\%$ reduction in pain: **OR 1.41** (95% CI 0.99, 2.00)
 - Mean difference from placebo: **-0.46** (95% CI -.8, -.11) on a numerical 0-10 pain scale
- Authors' conclusion: modest-quality evidence to support the use of cannabinoids to treat chronic pain
- The majority of studies had a high risk of bias


CHRONIC PAIN CONDITIONS²⁶

- Some chronic pain conditions that marijuana may help regulate:
 - Myofascial pain syndrome (MPS)
 - Central pain syndrome (CPS)
 - Spinal cord injury
 - Fibromyalgia
 - Osteoarthritis (OA)
 - Rheumatoid Arthritis (RA)
 - HIV Neuropathy


MIGRAINES⁸

- Marijuana has ability to:
 - Decrease pain signaling neurotransmitters
 - Modulate serotonergic receptor subtypes
 - Inhibit glutamatergic-mediated toxicities
 - Provide anti-inflammatory activity
 - Provide acute symptomatic and chronic preventative relief


CANCER⁴⁷

- THC and CBD have anti-tumor properties
 - Preclinical data only
 - Glioblastoma, leukemia, lung, brain, and others
- Exact mechanism of action is unknown
- Proposed mechanisms:
 - CB1 and CB2 agonism modulates ERK, p38 MAPK, and JNK1/2
 - CBD production of ROS, activation of specific receptors

CANCER⁷

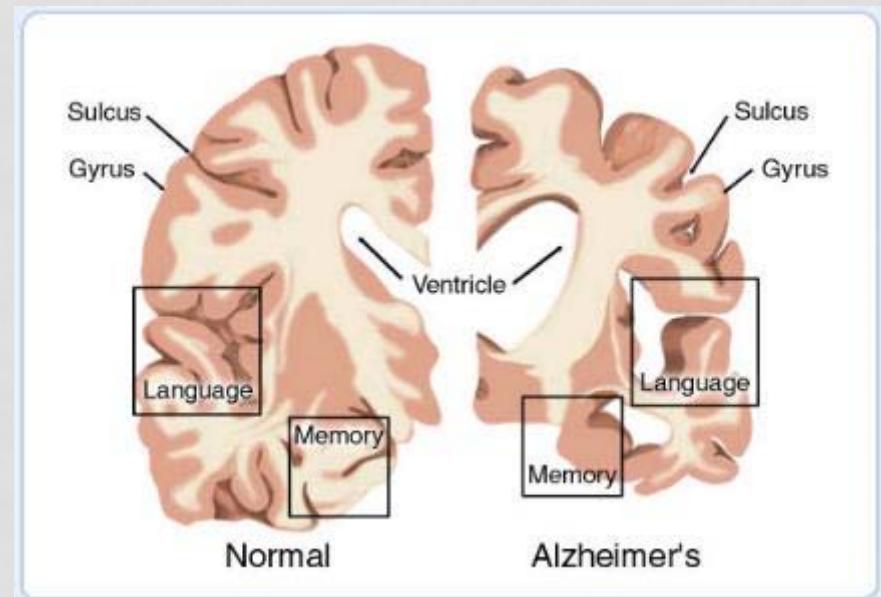
- Benefits
 - Inhibits chemotherapy-induced nausea and vomiting
 - Appetite stimulation
 - Pain inhibition
- Has favorable drug-safety profile and does not produce the conventional side effects of chemotherapy drugs
- No clinical efficacy data for treating cancer in humans

CANCER ANALGESIA⁴³

- Oral THC – two small studies (n=10, n=36)
 - Doses of 10, 15, 20mg were studied
 - 10 and 20mg of THC were equivalent to 60 and 120mg of codeine for analgesia
 - High-dose THC was more sedative than codeine
- THC:CBD oromucosal spray RCT
 - Patients who's pain was not controlled by strong opioids
 - THC:CBD was efficacious in managing cancer pain

HIV/AIDS

- Marijuana used as an appetite enhancer and pain-relieving medication in HIV-infected patients
- Also can be used for the following in these patients
 - Sleep/relaxation
 - Prevent nausea/vomiting
 - Pain
 - Anxiety/depression
 - Stimulation/energy


HIV/AIDS⁶

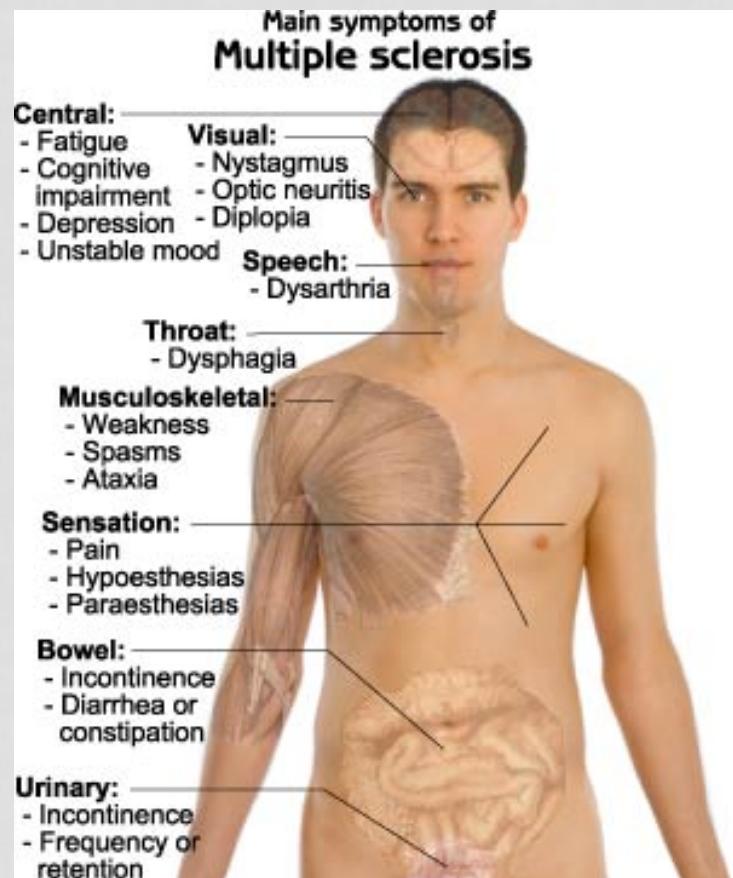
- Study assessed if smoked cannabis is effective as an analgesic in HIV-associated distal sensory polyneuropathy
- It was found that pain relief was greater with cannabis compared to the placebo

ALZHEIMER'S DISEASE¹¹

- CBD reduced neuronal degeneration in rats
- THC can revert memory impairment and of β -amyloid plaque formation in mice
- CBD prevented development of tangles and plaques in mesenchymal stem cells

AMYOTROPHIC LATERAL SCLEROSIS (ALS)^{15, 16}

- ALS is a neurodegenerative disease that affects the nerve cells in the brain and the spinal cord
- Medical marijuana helps to manage symptoms of ALS by causing the following:
 - Pain relief
 - Muscle relaxation
 - Dilation of the lungs
 - Improved sleep
 - Appetite stimulation
 - Antioxidant and neuroprotective effects to help prolong neuronal cell survival


CROHN'S DISEASE¹⁸

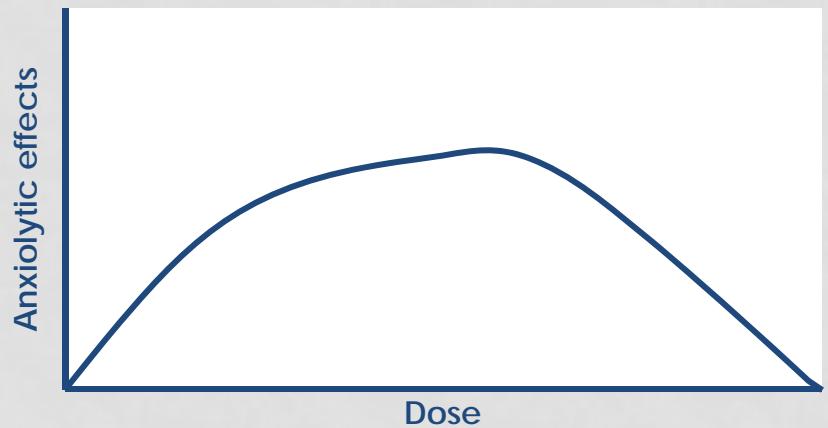
- Medical marijuana is useful in Crohn's disease for:
 - Easing pain
 - Limiting frequency of diarrhea
 - Helped with weight gain
- Results of a study concluded that more studies need to be conducted with a larger population to further test the result of marijuana as a pharmacotherapy for Crohn's disease

MULTIPLE SCLEROSIS (MS)²⁷

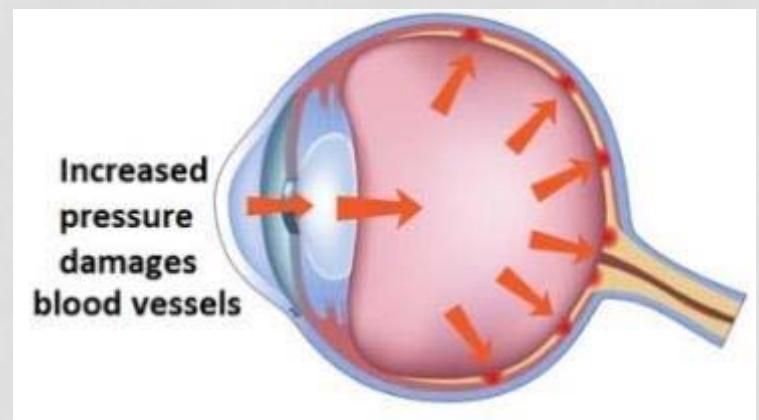
- Cannabinoids probably help to relieve severe and persistent muscle spasms/contractions
- Also may provide neuroprotective and anti-inflammatory effects
- Neuroinflammation reduced through regulation of cytokine levels in microglial cells
- Short-term therapy has been seen to be effective, but further studies need to be conducted to assess long-term treatment

MULTIPLE SCLEROSIS (MS)⁴⁸

- 2018 Review by Rice J et al.
- Strongest evidence to indicate cannabinoid are beneficial for muscle spasticity and neuropathic pain in MS
- Best dose unknown, but most studies used 20-40mg THC in divided doses
- Need more high quality studies!!!


ANXIETY

- Natural endocannabinoid system regulates anxiety
 - Inhibits excitatory signals that involve glutamate and NMDA
- Chronic and acute stress results in the reduction of endocannabinoids and the responsiveness of the receptors
 - Treatment with medical marijuana helps to increase these levels to relieve the anxiety due to stress


ANXIETY⁴⁸

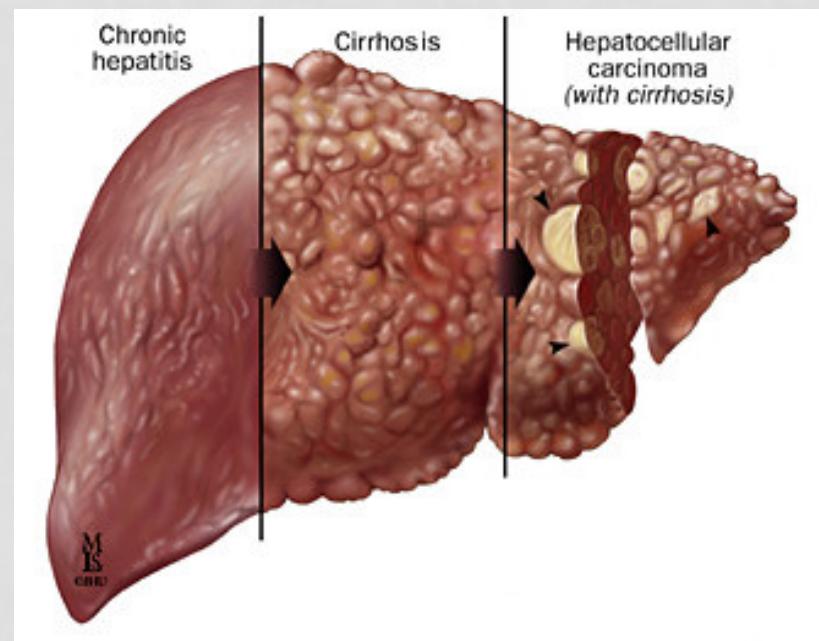
- Human and animal studies have shown that CB1 receptor agonists are:
- Anxiolytic at low doses
 - Also produce euphoria, relaxation, heightened perception, sociability and creativity
- Anxiety-inducing at high doses
 - Also elicit phobia, agitation, panic, dysphoria, psychotic manifestations and cognitive impairments
- Inverse U dose-response

GLAUCOMA⁴⁹

- CB1 and CB2 receptors are found in the retina and multiple other eye tissues
- 2-AG and AEA are found at high levels in the eye
- THC & nabilone lower IOP
- Neuromodulatory effect of CB1 and CB2 activation may decrease IOP, neuroprotective properties may help with optic nerve

GLAUCOMA⁵⁰

- Problems:
 - Effects are transient, requiring frequent dosing
 - Tolerance to effects after repeat dosing
 - Lack of recent, well-controlled human clinical studies


GLAUCOMA¹⁹

- A topical formulation would be the ideal form of application
 - Difficult because eye drop form only results in <5% of penetration of the drug according to a study
 - Delivery of medication needs to be refined

HEPATITIS C²⁰

- Medical marijuana used for Hepatitis C patients to for the following:
 - Nausea
 - Moderation of chronic liver disease
 - Reducing inflammation

EPILEPSY

- <https://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/pubmed/29768152>
- <https://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/pubmed/28188044>
- <https://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/pubmed/29115760>
- <https://www.ncbi.nlm.nih.gov.proxy.lib.umich.edu/pubmed/29061872>

CHILDREN¹³

- Children are not the first age group to be considered for medical marijuana
- A use of medical marijuana in children is the treatment of severe seizures
 - The oil of the cannabis is extracted and used for treatment
- The long-term effects of early marijuana use in children is not known

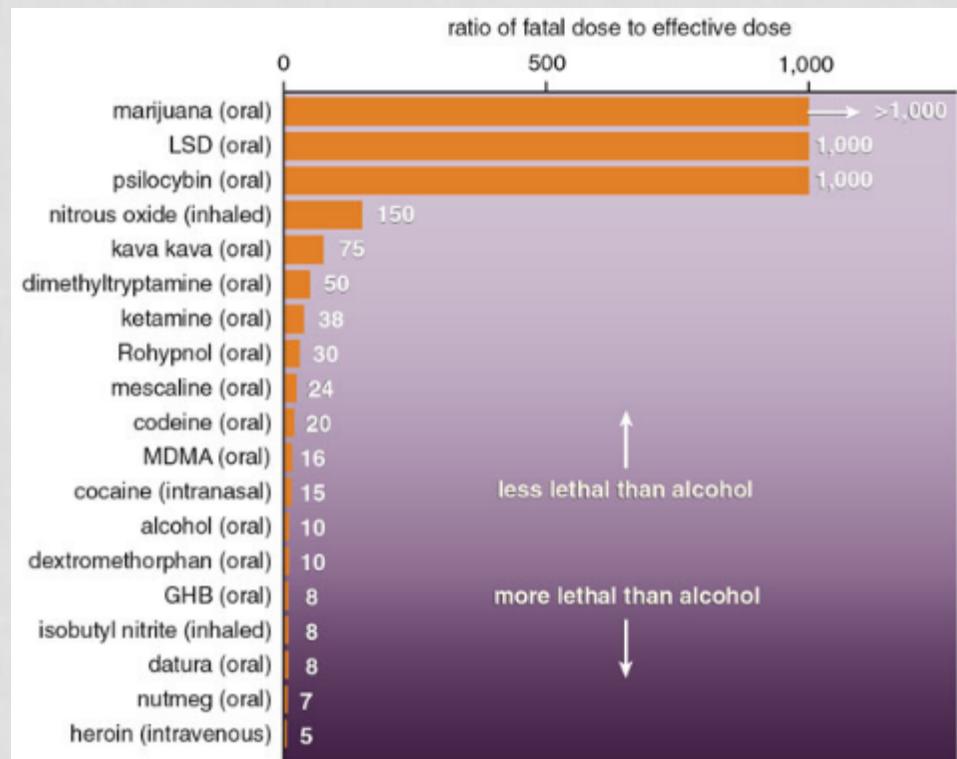
ADVERSE EVENTS OF MEDICAL MARIJUANA

ADVERSE EVENTS ASSOCIATED WITH MARIJUANA USE¹⁷

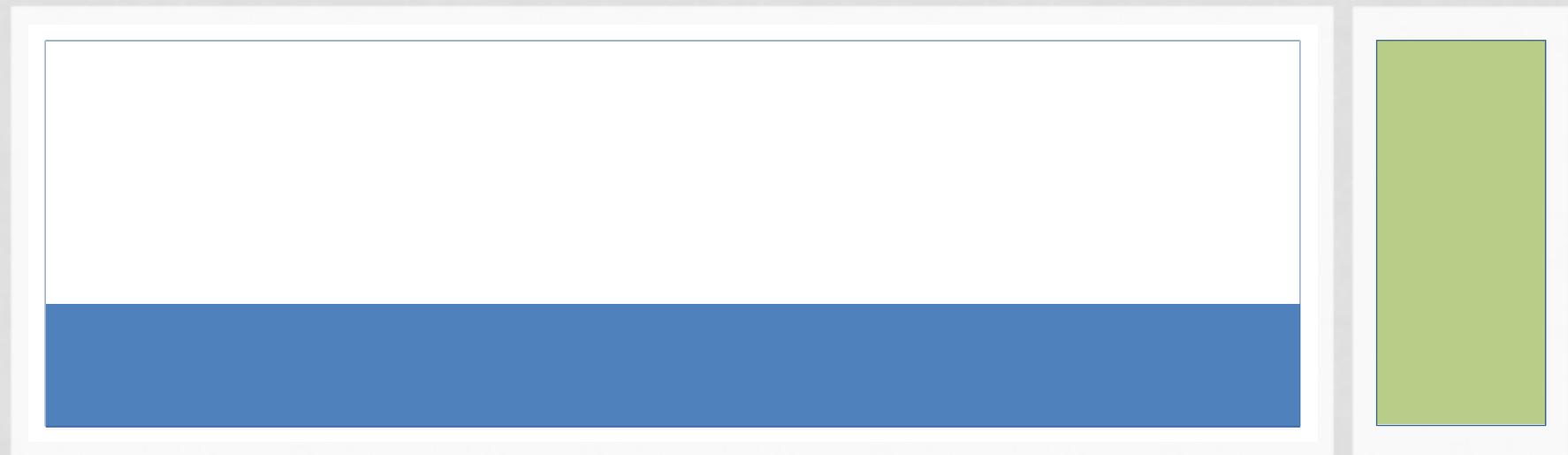
- Chronically smoking marijuana use may cause the following adverse events:
 - Dependence
 - Withdrawal
 - Irritability, depression, insomnia, nausea, obstructive pulmonary disease (COPD), and lung cancer
- Using a vaporizer opposed to smoking may diminish the level of the more toxic components in marijuana
 - Smoking marijuana contains 4 times more tar and 50% more carcinogens than that of tobacco

DETRIMENTAL EFFECTS OF SMOKING^{34,35}

- Can lead to respiratory illness
 - One marijuana cigarette causes as many pulmonary problems as 4-10 tobacco cigarettes
 - Increase risk for bronchitis, emphysema, lung cancer
- Can cause cardiovascular complications
 - Raises blood pressure and heart rate 20-100%
 - 4.8 times risk of heart attack in hour after use


EFFECTS IN PREGNANCY³⁶

- Increasing evidence that prenatal exposure can lead to:
 - Increased risk of motor, social, and cognitive disturbances
 - Higher rate of low birth weight in infants and childhood leukemia
- Marijuana has been found in breast milk
 - Avoid when breastfeeding


ACUTE TOXICITIES³³

- Medical marijuana is less lethal than alcohol and many illicit drugs

TOXICOLOGY OF CANNABIS

- Has wide therapeutic index
- No known direct deaths
 - Implied association with deaths due to underlying health conditions especially arrhythmias/heart attacks
- Fatal dose is unknown, but implied from animal studies that may be 4000 to 40000 times the highest recreational dose

2017 NATIONAL ACADEMIES OF SCIENCES REPORT

2017 NATIONAL ACADEMIES OF SCIENCES REPORT

- Goal: to develop a comprehensive, in-depth review of existing evidence regarding the health effects (harms and benefits) of cannabis and cannabinoids use
 - Make short and long-term recommendation regarding research agenda to identify the most critical research and advance the cannabis and cannabinoid research agenda

2017 NATIONAL ACADEMIES OF SCIENCES REPORT

- Between June and December 2016, a committee held 5 in-person meetings and 1 virtual meeting
- Conducted an extensive search of relevant databases
 - 24,000 articles found
 - Committee considered more than 10,000 abstracts to determine relevance for the report

2017 NATIONAL ACADEMIES OF SCIENCES REPORT

- 11 prioritized end-points
 - Therapeutic effects
 - Cancer incidence
 - Cardiometabolic risk
 - Respiratory disease
 - Immune function
 - Injury and death
 - Prenatal, perinatal, and postnatal outcomes
 - Psychosocial outcomes
 - Mental health
 - Problem cannabis use
 - Cannabis use and abuse of other substance

THERAPEUTICS

- In adults with chemotherapy induced nausea and vomiting, oral cannabinoids are effective antiemetics
- In adults with chronic pain, patients who were treated with cannabis or cannabinoids are more likely to experience clinically significant reduction in pain symptoms

THERAPEUTICS

- In adults with MS related spasticity, short-term use of oral cannabinoids improves patient-reported spasticity symptoms
- For these condition, the effects of cannabinoids are modest; for all other conditions evaluated there is inadequate information to assess their effects

RESPIRATORY DISEASE

- Substantial evidence of a statistical association between long-term cannabis smoking and worse respiratory symptoms and more frequent chronic bronchitis episodes
- Moderate evidence of a statistical association between cannabis smoking and improved airway dynamics with acute use, but not with chronic use

RESPIRATORY DISEASE

- Moderate evidence of a statistical association between cannabis smoking and higher forced vital capacity (FVC)
- Moderate evidence of a statistical association between cessation of cannabis smoking and improvements in respiratory symptoms

RESPIRATORY DISEASE

- Limited evidence of a statistical association between occasional cannabis smoking and an increased risk of COPD when controlled for tobacco use
- Insufficient evidence to support or refute a statistical association between smoking cannabis and hospital admissions for COPD
- Insufficient evidence to support or refute a statistical association between cannabis smoking and asthma development or exacerbation

INJURY AND DEATH

- Cannabis use prior to driving increases the risk of being involved in a motor vehicle accident
- In states where cannabis is legal, there is increased risk of unintentional cannabis overdose injuries among children
- Unclear whether and how cannabis use is associated with all-cause mortality or with occupational injury

CANCER

- Moderate evidence of **no** statistical association between cannabis smoking and the incidence of lung cancer
- Moderate evidence of **no** statistical association between cannabis use and the incidence of head and neck cancers
- Limited evidence of a statistical association between current, frequent, or chronic cannabis smoking and non-seminoma-type testicular germ cell tumors

CANCER

- Insufficient evidence to support or refute a statistical association between cannabis smoking and the incidence of esophageal cancer
- Insufficient evidence to support or refute a statistical association between cannabis use and the incidence of prostate cancer, cervical cancer, malignant gliomas, non-Hodgkin lymphoma, penile cancer, anal cancer, Kaposi's sarcoma, or bladder cancer

CANCER

- Insufficient evidence to support or refute a statistical association between parental cannabis use and subsequent risk of developing AML/acute non-acute lymphoblastic leukemia, ALL, rhabdomyosarcoma, astrocytoma, or neuroblastoma in offspring

CARDIOMETABOLIC RISK

- Evidence is unclear as to whether and how cannabis use is associated with heart attack, stroke, and diabetes

IMMUNITY

- There exists a paucity of data on the effects of cannabis or cannabinoid-based therapeutics on the human immune system
- There is insufficient data to draw overarching conclusions concerning the effects of cannabis smoke or cannabinoids on immune competence

IMMUNITY

- There is limited evidence to suggest that regular exposure to cannabis smoke may have anti-inflammatory activity
- Insufficient evidence to support or refute a statistical association between cannabis or cannabinoid use and adverse effects on immune status in individuals with HIV

PRENATAL, PERINATAL, AND NEONATAL OUTCOMES

- Smoking cannabis during pregnancy is linked to lower birth weight in the infant
- The relationship between smoking cannabis during pregnancy and other pregnancy and childhood outcomes is unclear

PSYCHOSOCIAL

- Recent cannabis use impairs the performance in cognitive domains of learning, memory and attention
 - Recent use may be defined as cannabis use within 24 hours of evaluation
- A limited number of studies suggest that there are impairments in cognitive domains of learning, memory, and attention in individuals who have stopped smoking cannabis

PSYCHOSOCIAL

- Cannabis use during adolescence is related to impairments in subsequent academic achievement and education, employment and income, and social relationship and social roles

MENTAL HEALTH

- Substantial evidence of a statistical association between cannabis use and the development of schizophrenia or other psychoses, with the highest risk among the most frequent users
- In individuals with schizophrenia and other psychoses, a history of cannabis use may be linked to better performance on learning and memory tasks

MENTAL HEALTH

- Cannabis use does not appear to increase the likelihood of developing depression, anxiety, and PTSD
- For individuals diagnosed with bipolar disorders, near daily cannabis use may be linked to greater symptoms of bipolar disorder than non-users

MENTAL HEALTH

- Heavy cannabis users are more likely to report thoughts of suicide than non-users
- Regular cannabis use is likely to increase the risk for developing social anxiety disorder

PROBLEM CANNABIS USE

- Greater frequency of cannabis use increases the likelihood of developing problem cannabis use
- Initiating cannabis use at younger age increase the likelihood of developing problem cannabis use

CANNABIS USE AND ABUSE OF OTHER SUBSTANCES

- Limited evidence of a statistical association between cannabis use and the initiation of tobacco use
- Limited evidence of a statistical association between cannabis use and changes in the rates and use pattern of other illicit and illicit substances

CANNABIS USE AND ABUSE OF OTHER SUBSTANCES

- Moderate evidence of a statistical association between cannabis use and the development of substance dependence and/or a substance abuse disorder for substances including alcohol, tobacco, and other illicit drugs

CONCLUSIONS

- There are specific regulatory barriers, including the classification of cannabis as Schedule I substance, that impedes the advancement of cannabis and cannabinoid research
- Often difficult for researchers to gain access to the quantity, quality, and type of cannabis product necessary to address specific research questions on the health effects of cannabis use

CONCLUSIONS

- A diverse network of funders is needed to support cannabis and cannabinoid research that explores the beneficial and harmful health effects of cannabis use
- To develop conclusive evidence for the effects of cannabis use on short and long-term health outcomes, improvements and standardization in research methodology are needed

REPORT RECOMMENDATIONS

- **Recommendation 1: Address Research Gaps**
 - Develop comprehensive evidence on the short- and long-term health effects of cannabis use (beneficial and harmful)
 - Public agencies, philanthropic and professional organizations, private companies, and clinical and public health research groups should provide funding and support for a national cannabis research agenda that address key gaps in the evidence

REPORT RECOMMENDATIONS

- **Recommendation 1: Address Research Gaps**
 - Prioritized research streams and objective should include
 - Clinical and observational research
 - Health policy and health economics research
 - Public health and public safety research

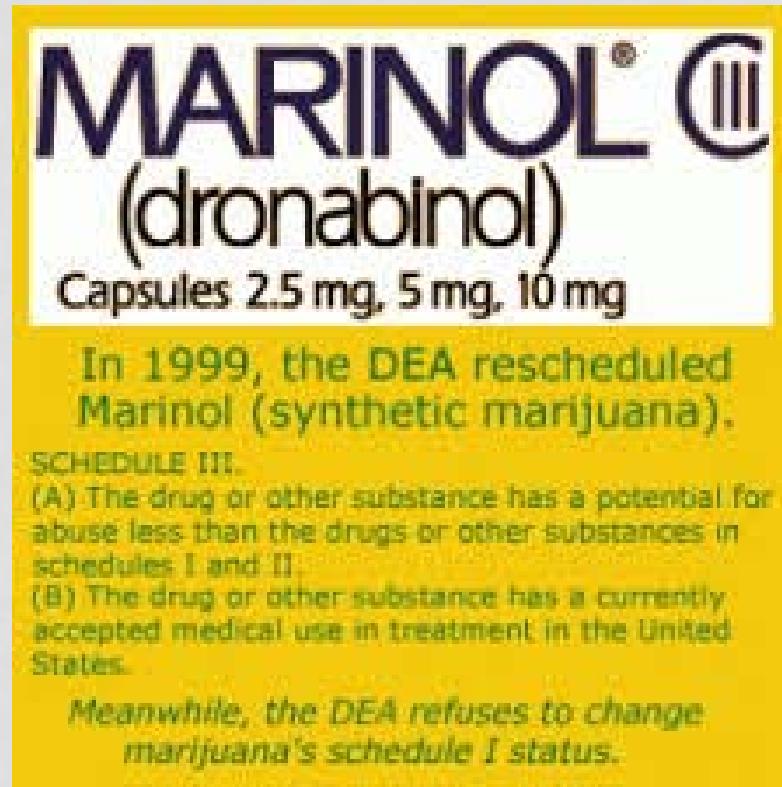
REPORT RECOMMENDATIONS

- **Recommendation 2: Improve research quality**
 - To promote development of conclusive evidence on the short and long-term effects of cannabis use, agencies should jointly fund a workshop to develop a set of research standards and benchmarks to guide and ensure production of high-quality cannabis research
 - US Department of Health and Human Services
 - Centers for Disease Control and Prevention
 - National Institutes of Health

REPORT RECOMMENDATIONS

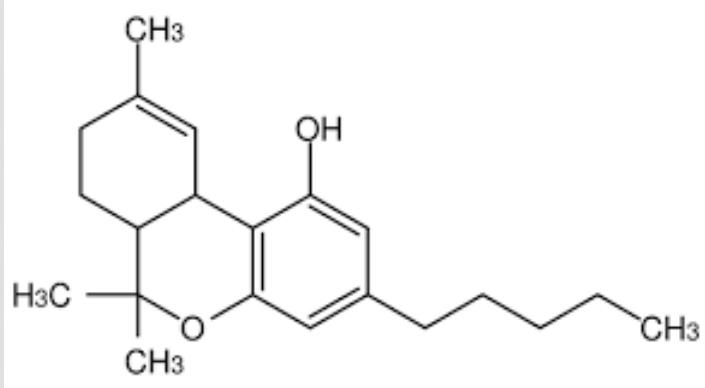
- **Recommendation 3: Improve surveillance capacity**
 - To ensure that sufficient data are available to inform research on short and long-term health effects, agencies should fund and support improvements to federal public health surveillance systems and state-based public health surveillance efforts
 - CDC
 - Substance abuse and mental health services administration
 - Association of state and territorial health officials
 - National association of county and city health officials
 - Association of public health laboratories
 - State and local public health departments

REPORT RECOMMENDATIONS


- **Recommendation 4: Address Research Barriers**
 - CDC, NIH, FDA, industry groups, and nongovernmental organizations should fund the convening of a committee of experts tasked to produce an objective and evidence-based report that fully characterizes the impacts of regulatory barriers to cannabis research
 - Propose strategies for supporting development of resources and infrastructure necessary to conduct a comprehensive cannabis research agenda

PHARMACEUTICAL DRUGS

CLINICAL USES


DRONABINOL

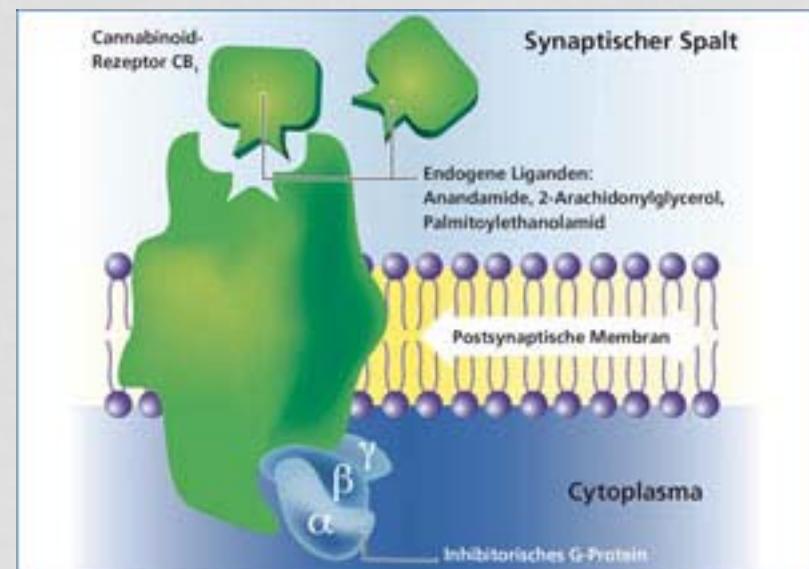
- Also known as marinol
- FDA-approved
- Produced by Unimed Pharmaceuticals
- It is synthetic THC
- Used for treatment of nausea and vomiting in cancer patients
- Also used as an appetite stimulant and as an analgesic to ease neuropathic pain in MS patients

DRONABINOL

- Can be purchased in states that do not have medical marijuana laws
- Bioavailability: 10-20% of IV
 - High first pass metabolism
- Half-life: 60 hours
- Side effects: sedation, mood altered (laughing, elation), confusion

NABILONE

- Also known as Cesamet
- Produced by Valeant Pharmaceuticals International
- Its suggested use is for nausea and vomiting in patients undergoing cancer treatment


SATIVEX

- Sativex is produced by GW Pharmaceuticals
 - Generic is Nabiximols
 - Approved in UK in June of 2010, not approved in the US
 - Not available in US
- This is a combination of THC and cannabidiol

SATIVEX

- Formulations: mouth spray or cigarettes
- Uses:
 - Neuropathic pain in patients with Multiple Sclerosis (MS)
 - Adjunct analgesic therapy for cancer patients who have moderate to severe pain and who have already reached the maximum dose of opioid therapy

RIMONABANT³⁷

- Brand names:
 - Accomplia®
 - Zimulti®
- Not available in the US
- It is a cannabinoid receptor 1 blocker
- Used for the treatment of obesity and nicotine dependence

ROLE OF PHARMACISTS IN MEDICINAL CANNABIS²⁶

- Pharmacists need to be involved
 - Educate patients in proper use
 - Counsel the patient and family
- Potential in compounding
 - Ointments, inhalers, capsules, etc.
- Pharmacist can help regulate dosing and help improve efficacy of treatment

REFERENCES

1. 23 Legal Medical Marijuana States and DC. ProCon.org. <http://medicalmarijuana.procon.org/view.resource.php?resourceID=000881>. (accessed June 21, 2015).
2. Ingestion Methods. The Michigan Medical Marijuana Association. <http://michiganmedicalmarijuana.org/page/articles/health/ingestion-methods>. (accessed June 21, 2015).
3. Medical Conditions. The Michigan Medical Marijuana Association. <http://michiganmedicalmarijuana.org/page/articles/health/conditions>. (accessed June 21, 2015).
4. What makes marijuana medical grade? The Michigan Medical Marijuana Association. <http://michiganmedicalmarijuana.org/page/articles/caregivers/what-qualifies-as>. (accessed June 21, 2015).
5. 10 Pharmaceutical Drugs Based on Cannabis. ProCon.org. <http://medicalmarijuana.procon.org/view.resource.php?resourceID=000883>. (accessed June 21, 2015).
6. Center for Medicinal Cannabis Research, "Report to the Legislature and Governor of the State of California presenting findings pursuant to S8847 which created the CMCR and provided state funding," University of California, (San Diego, CA: February 2010), p. 10.
7. Guzman, M. Cannabinoids: potential anticancer agents. *Nature Reviews*. 2003;3:745-755.
8. Russo, E. Hemp for headache: an in-depth historical and scientific review of cannabis in migraine treatment. *Journal of Cannabis Therapeutics*.2001;1(2):21-92.
9. Recent research on medical marijuana. NORML. <http://norml.org/component/zoo/category/recent-research-on-medical-marijuana>. (accessed June 23, 2015).
10. Drug facts: is marijuana medicine? National Institute on Drug Abuse. <http://www.drugabuse.gov/publications/drugfacts/marijuana-medicine>. (accessed June 23, 2015)

REFERENCES

11. Noreen N, et al. Is Cannabidiol a Promising Substance for New Drug Development? A Review of its Potential Therapeutic Applications. *Crit Rev Eukaryot Gene Expr.* 2018;28(1):73-86.
12. Marijuana stops child's severe seizures. CNN. <http://www.cnn.com/2013/08/07/health/charlotte-child-medical-marijuana/>. (accessed July 3, 2015).
13. Scott KA, Shah S, Dalgleish AG, et al. Enhancing the activity of cannabidiol and other cannabinoids *in vitro* Through modifications to drug combinations and treatment schedule. *Anticancer Research.* 2013; 33:4373-4380.
14. What is ALS? ALS Association. <http://www.alsa.org/about-als/what-is-als.html?referrer=https://www.google.com/>. (accessed July 5, 2015).
15. Carter GT, Rosen BS. Marijuana in the management of amyotrophic lateral sclerosis. *American Journal of Hospice & Palliative Care.* 2001; 18(4): 264-270.
16. Cinti S. Medical marijuana in HIV-positive patients: what do we know? *Journal of the International Association of Physicians in AIDS Care.* 2009;8(6):342-346.
17. Lahat A, Lang A, Ben-Heroin. Impact of cannabis treatment on the quality of life, weight and clinical disease activity in inflammatory bowel disease patients: a pilot prospective study. *Digestion.* 2012;85:1-8.
18. Tamida I, Pertwee RG, Azuara-Blanco A. Cannabinoids and glaucoma. *Br J Ophthalmol.* 2004;88:708-713.
19. Hepatitis C. NORML. <http://norml.org/library/item/hepatitis-c>. (accessed July 5, 2015).

REFERENCES

20. Devane WA et al. *Mol Pharmacol.* 1988;34:605-613
21. Munro S et al. *Nature.* 1993;365:61-65.
22. Ameri A. *Prog Neurobiol.* 1999;58:315-348.
23. Osei-Hyiaman D DePetrillo M, Pacher P, et al. *J Clin Invest.* 2005;115:1298-1305.
24. Cota D, Woods SC. *Curr Opin Endocrinol Diabetes.* 2005;12:338-351.
25. NABP 2009 Symposium. NABP. https://www.nabp.net/events/assets/Carter_Aggarwal.pdf. (accessed July 5, 2015).
26. Medical marijuana and cannabis medicines. DrugWarFacts.org. http://www.drugwarfacts.org/cms/Medicinal_Cannabis#sthash.xD0Vhkm1.zX9yVbPQ.dpbs. (accessed July 5, 2015).
27. Seamone MJ, Fass JA, Maniscalco-Feichti M, et al. Medical marijuana and the developing role of the pharmacist. *Am J Health-System Pharm.* 2007;64:1037-1044.
28. Discovery sheds new light on marijuana's anxiety relief effects. Vanderbilt University: Research News at Vanderbilt.
29. <http://news.vanderbilt.edu/2014/03/discovery-sheds-new-light-on-marijuana-anxiety-relief-effects/>. (accessed July 5, 2015).
30. Borgelt LM, Franson KL, Nussbaum AM, Wang GS. The pharmacologic and clinical effect of medical cannabis. *Pharmacotherapy.* 2013;33(2):195-209.

REFERENCES

31. Zuurman L, Ippel AE, Moin E, et al. Biomarkers for the effects of cannabis and THC in healthy volunteers. *Br J Clin Pharmacol.* 2008;67(!):5-21.
32. Blogspot. http://opiophilia.blogspot.com/2013_04_01_archive.html. (acessed July 7, 2015).
33. Amar MB. Cannabinoids in medicine: a review of their therapeutics. *Journal of Ethnopharmacology.* 2006;105:1-25.
34. Botswick JM. Blurred boundaries: the therapeutics and politics of medical marijuana. *Mayo Clin Proc.* 2012;87(2):172-186.
35. Marijuana and reproductive/pregnancy. University of Washington Alcohol & Drug Abuse Institute.
<http://learnaboutmarijuanawa.org/factsheets/reproduction.htm>. (accessed July 7, 2015).
36. Acomplia (Rimonabant) – Investigational agent for the management of obesity. Drugdevelopmenttechnology.com. <http://www.drugdevelopment-technology.com/projects/rimonabant/>. (acessed July 7, 2015).
37. The Health Effects of Cannabis and Cannabinoids: The Current State of Evidence and Recommendations for Research. The National Academics of Sciences, Engineering, and Medicine. January 2017.
38. Howlett A, Abood M. CB1 & CB2 Receptor Pharmacology. *Adv Pharmacol.* 2017; 80: 169–206.
39. Elphick M, Egertova M. The neurobiology and evolution of cannabinoid signalling. *Philos Trans R Soc Lond B Biol Sci.* 2001 Mar 29; 356(1407): 381–408.

REFERENCES

40. Huestis, M. Human Cannabinoid Pharmacokinetics. *Chem Biodivers.* 2007 Aug; 4(8): 1770–1804.
41. Martin-Sanchez E, Furukawa TA, Taylor J, Martin JL. Systematic review and meta-analysis of cannabis treatment for chronic pain. *Pain Med* 2009;10:1353–68.
42. Cannabis and Cannabinoids (PDQ®), PDQ Integrative, Alternative, and Complementary Therapies Editorial Board. Published online: June 19, 2018.
43. Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. *Drug Metab Rev.* 2014 Feb;46(1):86–95.
44. Yamaori S, et al. Potent inhibition of human cytochrome P450 3A isoforms by cannabidiol: role of phenolic hydroxyl groups in the resorcinol moiety. *Life Sci.* 2011 Apr 11;88(15-16):730-6.
45. Yamaori S, et al. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. *Drug Metab Dispos.* 2011 Nov;39(11):2049-56.
46. McAllister S, et al. The antitumor activity of plant-derived non-psychoactive cannabinoids. *J Neuroimmune Pharmacol.* 2015 Jun; 10(2): 255–267.
47. Whiting, P.F., Wolff, R.F., Deshpande, S., Di Nisio, M., Duffy, S. et al.(2015). Cannabinoids for medical use: A systematic review and meta-analysis. *JAMA*313, 2456–2473.
48. Tambaro S, Bortolato, M. Cannabinoid-related agents in the treatment of anxiety disorders: current knowledge and future perspectives. *Recent Pat CNS Drug Discov.* 2012 Apr 1; 7(1): 25–40.
49. Panahi, Y. The arguments for and against cannabinoids application in glaucomatous retinopathy. *Biomedicine & Pharmacotherapy* 86 (2017) 620–627.