Mechanism of Injury/
Anticipation of Injury in Pediatric Patients

MARLA L. VANORE, RN, MHA
CHILDREN’S HOSPITAL OF PHILADELPHIA
Peds trauma resus
“The world is full of obvious things that nobody ever observes”

Sir Arthur Conan Doyle
Kinematics

- The science of describing the motion of objects

- Health care provider’s role: Evaluating the probability of injury based on
 - Forces
 - Motion
Why are Children So Different?
Developmental Differences

• Impulsive and easily distracted
• Constant need for motion
• Limited ability to assess speed, distance
• Limited ability to localize sound
• Limited knowledge base
• Dependent on adults for protection
Larger Head; Higher Center of Gravity
Differences in the Childhood Spine

- Ligamentous laxity
- Shallow and angled facet joints,
- Vertebral bodies are anteriorly wedge-shaped and have not completely formed
- The fulcrum of motion in the cervical spine in children is at the C2-C3 level; after age 8 the fulcrum is at the C5-C6 level
- This less stable spine has to support an oversized head using underdeveloped neck muscles
Additional Physical Differences in Children

- Abdomen has less muscle mass
- Solid organs are larger compared to size of abdominal cavity
- Bones more compliant and not fully formed
Overview

- Blunt Injury Mechanisms
 - Motor vehicle crashes
 - Bicycle crashes
 - Pedestrian injuries
 - Falls

- Penetrating Injuries

- Blast Injuries
Motor Vehicle Crashes: Specific Concerns with Children

In children 0-14, average of 2.4 deaths per day, 446 injuries per day in 2013 (NHTSA)

- Unrestrained children become missiles
- Poorly restrained children frequently sustain seat belt injuries

Law of Energy

Energy can neither be created nor destroyed; it can change form, but the amount of energy stays constant.
Rear-facing
As long as possible until child reaches the maximum height or weight allowed for their rear facing seat

Forward-facing
As long as possible until child reaches the maximum height or weight for their seat

Belt positioning booster seat
Until 57” (4 ft. 9 in) & between 8-12 years of age

Children<13 should be in the back
Transport of kids with special health needs: aappolicy.aappublications.org
Restraints

- Spread energy of crash across bony surfaces; NOT soft tissue

Seatbelts: Proper Fit

- Lap belt snug across iliac crests - NOT across the abdomen
- Shoulder belt across middle of chest & shoulder - NOT across neck or face
Why Are Children More Vulnerable?

Anatomy

- Higher center of gravity
- Iliac crests not fully developed

Behavior

- Place shoulder strap behind back
- Sit towards front of the seat
Injuries Due to Improper Restraints

- Abdominal Injuries

- Spine Injuries – Chance fracture
Frontal Impact

- Down and under

- Up and over
 Injuries to head, neck, chest, and abdomen

- Front Seat Passengers
 Potential for multiple injuries
Side Impact

Children

- Typical injury pattern: head, chest, lower extremity
- Isolated rib fractures, no flail chests
- Pulmonary contusions

Side Air bags: decreases injury by ~ 60%
Airbags

- 1st generation
 - Created to protect unrestrained adult males
 - Deployed @150-200 mph
 - Can cause severe head & neck injuries & burns in children

- 2nd generation 1998
 - Sensors act as safety controls
 - Adjusts deployment to various conditions

- Designed to protect belted and unbelted occupants
 - Takata airbag explosions
 - Ammonium nitrate and moisture
Bicycle Injuries
Childhood Risk Factors

- **Age**
 - 5-14 year olds: ¼ of all bike related deaths and ½ of all injuries
 - Children age 5-14 years made up the majority of the ED visits among 0-19 y/o for bicycling in 2015

- **Time and place**
 - Non-intersections
 - Close to home/minor roads
 - Summer/late afternoons

- **Mortality**
 - 90% of deaths – Collisions with Motor Vehicles

www.safekids.org
Bicycle Crashes

- 70% of the time child’s head hits the ground first
- Helmet use can reduce the risk of injury by 85%
- 40 Percent of Parents Say Children Don’t Always Wear Helmets While Riding

www.safekids.org
Bicycle Helmet Laws

http://www.iihs.org/iihs/topics/laws/bicycle-laws
Over the Handlebars

Head, neck, chest, abdominal, extremity injuries
Bicycle Handlebar Mechanism

- Abdomen speared by handlebars:
 - Small round bruise
 - Energy concentrated
 - Pancreas, intestine, kidney, liver, spleen injuries
Pedestrian Injuries
Adolescent/Adult Pedestrian Injuries

- Bumper and hood hit leg
- Fractures above and below joint
- Thrown causing pelvic fractures
Waddell’s Triad

Age 0-14: 11,000 pedestrians struck in 2011 (NHTSA)

Figure 14: Pedestrian Struck
Typical pattern of injuries affecting upper leg (1), chest/abdomen (2), and head (3)
Falls

- Bilateral calcaneous fractures
- Femoral shaft fractures
- Hip dislocation
- Thoracolumbar vertebral fractures
- Fractures of upper extremities
Differences Between Age Groups

- Study of falls >10 feet
 - 0-2 y/o: head injuries
 - 3-10 y/o: long bone fractures
 - 11-21 year olds:
 Vertebral,
 Hand, and
 Foot fractures

Sawyer et al, Journal of Pediatric Orthopaedics, 2000
Minor Falls

- Stairways
- Parents arms
- Playgrounds
Penetrating Injuries

- Stab wounds
- Gun shot wounds
- Impalements
Kinetic Energy

- Kinetic Energy = \[\text{Mass} \times \text{Velocity}^2 \]

- Low velocity: Impalements, stab wounds
- Medium velocity: Handguns, BB guns
- High velocity: rifles (e.g. M-16’s)
Weapons

Medium Velocity
- Handguns
 - Velocity ~800 feet/second
- Air powered BB or pellet guns
 - ~400-900 feet/second
 - Victims usually < 18

High Velocity
- Rifles
 - Velocity > 3,000 feet/second
Shotguns

- Low velocity pellets
- Devastating injury up close
Ballistics

- Internal ballistics
 - Motion within the gun (rifling)
- External ballistics
 - Range
 - Drag (air resistance)
- Terminal ballistics
Terminal Ballistics

- Bullet composition
- Yaw and Tumble
- Cavitation
 \[\uparrow \text{velocity} = \uparrow \text{cavity} \]
 \[\uparrow \text{yaw } \& \text{ tumble} = \uparrow \text{cavity} \]
Terminal Ballistics

- Density & compressibility of tissue
 Increased density = increased damage

Fascia & Skin
Muscle & Fat
Solid organs
Bone
Blast Injuries

- **Primary:** Blast shockwave stress & shear waves in tissues
- **Secondary:** Ballistic injuries from primary & secondary fragments
- **Tertiary:** Blast wave translocation of people/objects
- **Quaternary:** Explosion related e.g. burns, inhalation
- **Quinary**
 - Bacteria & radiation additives
Enclosed Spaces

- Increased power and secondary fragments
- Increased injury/death
Injuries: Children & Adolescents vs Adults

- 5 year study of 49 children (0-10), 65 Adolescents (11-15) and 723 adults in Israel.
- Children more likely to sustain severe injury and brain injury than adults
- Children less likely to sustain extremity injury or open wounds than adults
- Adolescent = Adult except less internal injuries, more contusions/superficial injuries to extremities

Jaffe et al, Annals of Surgery, 2010
Summary

- Injuries can be predicted
- Gather and document information
- Keep a high index of suspicion
Questions?